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Abstract: Wireless spectrum is a scare resource, but in prac-
tice much of it is under-used by current owners. To enable
better use of this spectrum, we propose an auction approach
to dynamically allocate the spectrum in a secondary mar-
ket. Unlike previous auction approaches, we seek to take
advantage of the ability to share spectrum among some bid-
ders while respecting the needs of others for exclusive use.
Thus, unlike unlicensed spectrum (e.g. Wi-Fi), which can be
shared by any device, and exclusive-use licensed spectrum,
where sharing is precluded, we enable efficient allocation by
supporting sharing alongside quality-of-service protections.
We present SATYA (Sanskrit for “truth”), a strategyproof
and scalable spectrum auction algorithm whose primary con-
tribution is in the allocation of a right to contend for spec-
trum to both sharers and exclusive-use bidders. We demon-
strate SATYA’s ability to handle heterogeneous agent types

involving different transmit powers and spectrum needs through

extensive simulations.

1. INTRODUCTION

Spectrum is a scarce and expensive resource. For exam-
ple, the 2006 Federal Communications Commission (FCC)
auctions for 700 - 800 MHz are estimated to have raised al-
most $19 billion dollars. Hence, the barrier to entry for po-
tential spectrum buyers is high. One can either buy a lease
on spectrum covering a large area at a high price or use the
limited spectral bands classified as unlicensed (e.g. Wi-Fi).
Such unlicensed bands are subject to a “tragedy of the com-
mons” where, since they are free to use, they are over-used
and performance suffers [9]. Efforts such as the recent FCC
ruling on white spaces are attempting to free additional spec-
trum by permitting opportunistic access [4]. However, such
efforts are being met with opposition by incumbents (such
as TV broadcasters and wireless microphones manufactur-
ers) who have no incentive to permit their spectrum to be
shared.

Motivated by these observations, many researchers and
companies (e.g., [7, 35, 19]) have proposed allowing spec-
trum owners and spectrum users to participate in a secondary
market for spectrum where users are allocated the use of
spectrum in a small area on a dynamic basis based on their
short- or medium-term needs. This approach is beneficial
for two reasons. First, it allows flexible approaches to deter-
mining how best to allocate spectrum rather than relying on
the decision making of regulators like the FCC in the United
States. Second, it provides an incentive for spectrum that is
currently owned but unused or under-used to be made avail-

able by its owners. Note, by secondary market we mean, one
in which the owner of a chunk of spectrum leases different
frequencies to other users who bid for the spectrum. The
FCC has also recognized the potential use of a secondary
spectrum market and has begun encouraging spectrum own-
ers in certain bands to sublease the spectrum. [18].

Prior work has proposed a number of auction designs to
support such a market. However, the possibilities for shar-
ing in such markets have not been sufficiently explored. Most
auctions provide exclusive access: the allocation is such that
no winners will interfere. However, this may often not be
the most efficient use of spectrum. For example, devices like
wireless microphones are only used occasionally, so even if
they require exclusive access while in use, some other de-
vice may be able to use the same spectrum on a secondary
basis when they are not. This heterogeneity of devices and
demands is one source of opportunities for sharing. Further,
many devices are capable of using a medium access con-
troller (MAC) to share bandwidth when given the right to
contend.

Rather than full sharing, as in the Wi-Fi model, using an
auction has two key advantages. First, it provides revenue
and thus incentives for primary spectrum owners to open up
spectrum to other uses. Second, it provides incentives for
different potential users to describe (through bids) their dis-
tinct needs for spectrum access, be it exclusive or with shar-
ing. With Wi-Fi, if too many people try to use the same ac-
cess point, service degrades and may become unacceptable
for all of them, and no one has an incentive to consider the
(negative) externality their use imposes on others.

We present SATYA, a scalable auction-based algorithm
that permits different classes of spectrum users (sharing and
exclusive) to co-exist and share the spectrum whenever de-
sirable while appropriately accounting for the resulting ex-
ternalities. While SATYA relies on the MAC to arbitrate ac-
cess to the spectrum, the precise set of contending nodes is
decided based on the outcome of the auction.

SATYA uses a simple, yet expressive, language to allow
bidders to express their value for different allocations given
probabilistic activation patterns, interference, and different
requirements for shared vs exclusive-access spectrum. This
kind of expressiveness is necessary to enable the efficient al-
location of short-term spectrum rights to multiple devices.
To evaluate SATYA we use real world data sources to deter-
mine participants in the auction, along with the sophisticated
Longley-Rice propagation model [3] and high resolution ter-
rain information to generate conflict graphs. We compare the



performance of SATYA against other auction algorithms and
baseline computations. We also demonstrate how reserve
prices can be used to increase the revenue of spectrum auc-
tions, an important consideration when trying to encourage
spectrum owners to participate.

One particular design choice we have made with SATYA
is that it is a strategyproof auction. Roughly speaking, this
means it is optimal for a bidder to reveal his true valuation
when bidding. This strategic simplicity is one key advantage
of a strategyproof auction: devices do not need to be pro-
grammed with sophisticated strategies and employ wasteful
counterspeculation, and users can do well simply expressing
preferences directly and straightforwardly [32]. The other
key advantage of strategyproofness is that it makes evaluat-
ing SATYA much easier. The allocative efficiency and rev-
enue of a strategyproof auction can be evaluated by exam-
ining what happens when bidders reveal their true values.
For non-strategyproof auctions, we first have to reason about
how strategic bidders would behave, a much more difficult
problem.

Current proposals for secondary-market spectrum auctions
are not compatible with the externalities created by sharing
or are not scalable. The essential difficulty is that by ig-
noring the possibility of sharing, they rely on bidders car-
ing only about whether or not they are allocated a channel.
With sharing, bidders also care with whom they will share
the channel. SATYA uses a novel combination of the tech-
nical methods of “bucketing” and “ironing,” which enables
a tractable, strategyproof auction despite externalities. We
discuss these methods further in Section 4.

In summary, this paper makes the following contributions:

e The first strategyproof, scalable auction design for dy-
namic spectrum access that allows sharing and exclusive
access by appropriately dealing with the externalities this
creates.

e An approach that accommodates different classes of wire-
less users, each with a different transmit power, spectrum
access, and activation patterns.

e The use of sophisticated propagation models and real
world data to demonstrate the efficacy of SATYA, includ-
ing the use of reserve prices to increase the revenue from
auctions in secondary markets.

2. RELATED WORK

Most spectrum auction algorithms do not allow auction
participants to share a channel if they would interfere. Auc-
tions which are not strategyproof include approaches that al-
locate power [17] and approaches that allocate each agent
to his own channel [8, 12, 33]. VERITAS [35] was the first
spectrum auction based on a monotone allocation rule. Zhou
et al. [36] proposed TRUST, which uses a double auction
for cases when multiple owners are selling channels. Jia et
al. [23] envision spectrum owners auctioning off the right to
use it as a secondary user when it is not otherwise being used
by the owner and investigates an how revenue can be maxi-

mized in this setting. While winners share with the spectrum
owner, there is no sharing among participants.

For auctions that permit sharing among auction partici-
pants, Gandhi et al. [13] use an approach that allocates many
small channels, which effectively enables sharing based on
demands of less than a full channel. However, their algo-
rithm is not strategyproof and is not as expressive as ours. In
particular, it allows sharing among bidders who might want
only a portion of a channel but insists that their assignments
do not overlap. Thus, it cannot take advantage of bidders
who are not always active. Kasbekar and Sarkar [24] use a
strategyproof auction and allow bidders to express arbitrary
externalities, but they show that their approach is intractable
except in a simple case.

We discuss the background of strategyproof auctions in
general in Section 3. The issue of externalities in strate-
gyproof auctions has been considered in a number of con-
texts. Jehiel et al. [21, 22] consider situations, such as the
sale of nuclear weapons, where bidders care not just about
winning but about who else wins. Krysta et al. [26] con-
sider the problem of externalities in general combinatorial
auctions. A number of papers have recently considered ex-
ternalities in online advertising [15, 14, 25, 31].

3. CHALLENGES IN AUCTION DESIGN

In this section we describe the challenges that arise when
designing a spectrum auction that permits sharing while be-
ing strategyproof and providing revenue to the auctioneer.
First, we discuss the general form of an auction, introduce
the notion of strategyproofness, and discuss why this is a
desirable property. Second, we present a result by Myer-
son [29] from the economics literature, that provides a gen-
eral framework for designing strategyproof auctions using a
monotone allocation rule. Finally, we introduce the notion
of a reserve price, a standard approach to increasing the rev-
enue from an auction.

Auctions are a classic approach in economics to dividing
goods among participants with competing needs and private
values. In the simplest type of auction, a single item is sold
to one of a number of bidders. Each bidder has private in-
formation about his value V; € R™. There are many ways
such an auction can be run. One approach, known as a first
price auction, is that each bidder names a price and the bid-
der who bids the most wins the item and pays what he bid.
Another approach, due to Vickrey [34], is a second price
auction, where each bidder names a price and the bidder
who bids the most again wins the item. However, instead
of paying the price he named, he pays the price named by
the second highest bidder. We can adopt B; (perhaps # V;)
to denote the bid submitted by ¢ in an auction. Each bidder
receives an allocation A; € {0, 1}, where A; = 1 if the bid-
der gets the item and O otherwise. Feasibility would insist on
> A = 1. Writing B = (B4, ..., B,,) for bids from n bid-
ders, then we can write the allocation selected as a function
A(B) = (A1(B),...,A,(B)). Finally, each bidder makes



some payment P, € R™ that depends on the bids, so we
write P;(B). In a standard model, an bidder’s utility, which
captures his preference for the outcome of an auction, is

Us(B) = V;Ay(B) — Py(B),

and represents his true value for the allocation minus the
payment he makes.

Given these rules, how much should a bidder bid? In a
first price auction, P;(B) = B; for the winner, and so with
perfect knowledge a bidder should bid slightly more than the
highest bid of other bidders (to a maximum of V;), since he
wants to pay as little as possible. Thus bidders have an in-
centive to lie about their true value, and in doing so force
other bidders to consider how they should respond to these
lies (thus making the auction complex strategically). In con-
trast, in the second price auction, a bidder has a simple strat-
egy that is (weakly) optimal no matter what other bidders
do: bid his true value B; = V;. Such auctions, where it is
optimal for a bidder to bid his true value, are known as strat-
egyproof. The key advantage of a strategyproof auction in
our setting is this strategic simplicity.

But how to design such a mechanism in our setting? One
thing to recognize is that the allocation will be much more
complicated: many channels are being allocated to many
bidders, some of whom may ultimately share a channel. Part
of the challenge will be describing a concise language to
represent a bidder’s value for different possible allocations.
There is in fact a classic general auction design due to Vick-
rey, Clarke, and Groves [10, 16, 34] that is strategyproof.
However, implementing this auction requires determining
the optimal allocation of bidders to channels, which is an
NP-Hard problem in our setting [20]. Another challenge is
that the so-called VCG mechanism can have other bad eco-
nomic properties in combinatorial settings [6].

If a heuristic solution is used instead, the resulting auc-
tion need not be strategyproof. However, as shown by My-
erson [29] and introduced to the computer science literature
by Archer and Tardos [5], if a monotone heuristic is used
then prices can be computed that will make the auction strat-
egyproof.

THEOREM 1. An auction is strategyproof if and only if
for all bidders 1, and fixed bids of other bidders B_;,

1. A;(B) is a monotone function of B; (increasing B;
does not decrease A;(B)), and

2. Pi(B) = B;Ai(B) — [ Ai(z, B_;)dx.

Hence, to achieve strategyproofness, monotonicity is of
central importance in our approach. In the case of an auc-
tion for a single good, the nature of monotonicity is simple:
either a bidder gets the good or not. In our case, this would
be the equivalent of a bidder who demands a single channel
either being assigned the channel or not. This is the approach
used by VERITAS [35] and Jia et al. [23]. However, this is
not sufficient due to the externalities which occur when an

Channels Channels
free: 1, 2 free: 1

Figure 1: A potential violation of monotonicity. Nodes
A and B are in contention range. At node A’s location
channels 1 and 2 are free; at B only channel 1 is free.

agent’s value decreases because another agent is sharing the
channel. Thus, our allocation rule must be monotone not
only in whether a bidder gets a channel, but also how much
sharing occurs on that channel.

A first concern with auction design is to achieve allocative
efficiency, allocating resources to maximize social welfare:
the sum of bidder values. This is in contrast to much of the
work in the systems community where the goal is to maxi-
mize throughput or spectral efficiency, both of which are not
weighted by bidders’ values. Thus, in addition to traditional
metrics we also report social welfare in Section 5. Efficiency
is often held to be of primary importance when designing
a marketplace because it provides a competitive advantage
over other markets and encourages participation by buyers.
A second concern is to achieve a reasonable amount of rev-
enue for the seller. This is relevant because it affects the
incentive for a spectrum owner to participate. Paradoxically,
auctions that manage to allocate more goods can sometimes
raise less revenue. Suppose there are two agents participat-
ing in a second price auction and each wants a single item. If
there is one unit of the item for sale, then the revenue will be
the lesser of their values. However, if there are two units of
the item, the revenue will be zero since each is guaranteed to
get an item. A standard technique for increasing the revenue
of an auction is to institute a minimum bid or reserve price.
In Section 5.3, we add a reserve price to SATYA to enable a
good trade-off between efficiency and revenue.

In summary, we would like SATYA to be strategyproof,
which we achieve using a monotone allocation rule. We use
a reserve price to increase revenue for spectrum owners.

4. THE satva ALGORITHM

4.1 Overview

As discussed in Section 3, the key to designing a strate-
gyproof auction is to have an allocation rule that is mono-
tone: the more an agent bids the greater his satisfaction with
what he receives (given his true valuation). Prices can then
be calculated that make the auction strategyproof. SATYA
starts with a simple greedy algorithm that, when it considers
an agent, allocates that agent to the best channel available
(breaking ties by lowest channel number). We use two key
techniques to make this greedy allocation monotone: buck-
eting and ironing.

To understand these techniques, it is important to under-



stand how the greedy allocation can fail to be monotone.
Throughout this section we adopt terminology agent to re-
fer to an economic entity in the market. Figure 1 shows how
an agent bidding more can result in him being less satisfied.
If agent A has a lower bid than agent B, the algorithm as-
signs agent B to channel 1, then agent A to channel 2, and
both are fully satisfied. If agent A raises his bid so that it is
higher than agent B’s bid, then the algorithm assigns him to
channel 1. It has no other option than to assign agent B to
channel 1, so the agents share and are less well off.

This example would be prevented if the algorithm was
not allowed to assign agent B to channel 1 in the second
case. We do this for many cases by assigning each agent to
a “bucket” based on on his bid, such that the more an agent
bids the higher the bucket to which he is assigned. Agents
are not allowed to share with an agent from a higher bucket.
Thus, in the example shown in Figure 1, if agent B is in a
lower bucket than agent A, agent B will simply not be as-
signed a channel. If both agents are in the same bucket, we
will consider them in some order independent of their actual
bids, and adopt in place of their bid value the minimal pos-
sible value associated with the bucket. The effect is that the
allocation decision is invariant to an agent’s bid while the bid
is in the same bucket. Since agents are only allowed to share
with other agents within their buckets, the way buckets are
chosen is an important parameter of our algorithm. Larger
buckets create more possibilities for sharing. However, they
also mean that the algorithm pays less attention to agent’s
bids, so they may decrease the social welfare (the total value
of the allocation) and revenue.

Bucketing prevents many violations of monotonicity, but
it is not sufficient to prevent all of them. In particular, the ex-
ample from Figure 1 can still occur if agent A is in a lower
bucket than agent B and then raises his bid so they are in the
same bucket (if he raises it to be in a higher bucket there is no
problem). To deal with this case we adapt a technique known
as “ironing”’[30] to this domain. This is a post-processing
step in which allocations that might violate monotonicity are
undone. For each agent allocated in the current bucket, we
ask the counterfactual question “If this agent were instead in
the next lower bucket, is it possible he would be allocated?”
If so, we guarantee that the agent is satisfied in the current
bucket by canceling (or “ironing”) the allocations of other
agents with whom he shares. In Figure 1, if agent A were in
a lower bucket he would be allocated a channel. Therefore,
in the ironing step, the algorithm would change agent B’s
allocation and not allocate a channel in the current bucket.
It will be important, though, that a channel allocation that is
cancelled in this way will be considered unavailable for fu-
ture allocation. This prevents the need for nested arguments
involving the effect of ironing on future allocations, future
ironing of future allocations, and so on.

In this high level description, we have assumed that any
two agents who interfere with each other cannot share a chan-
nel without harming each other. In reality, this is not the

case; agents capable of using a MAC and sending at suffi-
ciently low rates will have a negligible effect on each other.
Many of the more intricate details of our algorithm come
from adapting the general approach to take advantage of this
fact and allow more efficient use of wireless spectrum.

4.2 Model

An auction mechanism for this problem takes the follow-
ing as input:
e The number n of agents.

e A set of channels C C N = {1,2,...}. We denote the
number of channels by x = |C|.

e A conflict graph G = (V, E). Each agent ¢ is a ver-
tex (: € V). There is an edge e = (i,7) € E if the
two agents would interfere with each other if they both
broadcast on the same channel.

e A vector C' = (C4,...,C,) that associates each agent ¢
with the set C; C C of channels that he can use.

e Avector B = (By,...,B,) of bids that associates each
agent ¢ with his bid (per epoch) B; € R™. This bid
is normalized for an agent’s activiation probabilitiy, and
(since our auction is strategyproof) represents the ex-
pected value to an agent for receiving as much of the
share of a channel is it demands, without interference, in
a single epoch.

o A finite set 7 of agent types. Each type T; € 7 is a four-
tuple T; = (x;, a;, d;, p;) where

e ; € {0,1} denotes whether an agent requires ex-
clusive use of a channel in order to make use of it
(z; = 1) or is willing to share without another agent
while active on the channel (z; = 0). An exclusive
use agent takes priority over any non exclusive use
agent when both are active on the channel, while con-
flicting with another exclusive use agent that is active
at the same time such that neither receives useful ac-
cess. An exclusive use agent only requires access
when active on the channel, and it may still make
sense to try to allocate the channel to other agents
for use when the agent is not active.

e a; € (0,1] denotes the activation probability of an
agent: how likely he is to actually want to use the
channel at any given time. We think of channels as
being used for a series of short epochs; a; is the prob-
ability that the agent will be active in a given epoch
and is assumed independent across epochs and across
agents. For example, an agent may always want to
use the channel (a; = 1) or he might use it in a bursty
fashion (a; = 0.1).

e d; € (0,1] is the demand of an agent; i.e., the por-
tion of a channel that an agent who is willing to share
(x; = 0) demands in order to achieve full value when
active. An agent’s value falls off linearly for a share
of the channel below d;, and there is no additional



value for receiving a share of more than d;. For
example, an agent with d; = 0.5 and bid value B;
would have an expected value of B; when allocated
0.5 of the bandwidth on the channel whenever ac-
tive and 0.48; when allocated 0.2 of the bandwidth
whenever active (since 0.4 = 0.2/0.5).

e p; € RT denotes the (per epoch) penalty an agent
incurs if he wishes to use the channel and it is com-
pletely unavailable. The penalty amount is normal-
ized for an agent’s own activation probabilitiy, and
represents the expected penalty incurred by an agent
for having a completely unavailable channel when-
ever the agent wants to use the channel. A channel
can only be unavailable in this sense when an exclu-
sive use agent is also active and interfering on the
channel; non exclusive use agents cannot will share
rather than make a channel completely unavailable.
Both exclusive use and non exclusive use agents can
have a penalty — this can be incurred even for exclu-
sive use agents when they are colocated with another
exclusive use agent. The penalty represents, for ex-
ample, the unhappiness of an ISP if it is unable to
offer any connectivity for a period of time.

e Avector T = (T1,...
with his type T;.

, T,,) that associates each agent ¢

We assume throughout that only the bid value B; is re-
ported by an agent to the auction. This represents the agent’s
claim about its private value, which we denote V;. An agent’s
type T; and an agent’s set of channels C; is assumed to be
known. In practice, these characteristics, such as how often
the agent makes use of the channel, can be observed by the
auctioneer and the agent can be punished if he lied.

To make our notion of a type concrete, consider the fol-
lowing examples of agents that might participate in such an
auction. An agent who wishes to run a low-power (local)
TV station on a channel would be unable to share it with
others when active (x; = 1), would be constantly broadcast-
ing (a; = 1), and would have a very large penalty p; since it
is unacceptable for the broadcast to be interrupted by some-
one turning on another (exclusive use) device. Another agent
might want to use a device like a wireless microphone that
also cannot share a channel when active (z; = 1), but might
be used only occasionally (a; = 0.05) and might have a
smaller value of p; since it may be acceptable if it is occa-
sionally unable to be used because there is another exclusive
agent also trying to use the channel. For example, it might
make sense to have several such devices share a channel if
they interfere with each other sufficiently rarely.

There are also classes of agents capable of using a MAC
and thus sharing a channel (z; = 0). For example, someone
who wants to run a wireless network could have constant
traffic (a; = 1) that consumes a large portion of the channel
(d; = 0.9), and might have a large penalty similar to a TV
station because completely disconnecting users is unaccept-

able. However, such an agent is willing to share the channel
with other non-exclusive types, and pay proportionately less
for a smaller fraction of the bandwidth. There might also be
opportunistic data users who occasionally (a; = 0.2) would
like to send a small amount information (d; = 0.4) if the
channel is available. Such users might have a low or even no
penalty as their use is opportunistic.

Taken together, this information describes in a concise
way the bid of an agent for all possible allocations. Based
on bids B from agents, an auction mechanism outputs a vec-
tor A = (A, ..., A,) of assignments of agents to channels
where A; € C; U {L} is the assignment to agent i. An as-
signment of L indicates the agent has not been assigned a
channel. Any assignment is feasible by definition, although
an allocation in which many agents are allocated may be un-
desirable because it will generate lots of penalties due to ex-
clusive use agents or very small fractional channel alloca-
tions amongst non exclusive use agents.

To determine an agent’s bid value for an allocation, we
need to reason about the kind of access an agent will receive
to a channel. As we saw in our examples, some types of
agents (z; = 1) are unable to share a channel and preempt
others who might be trying to use it. This is the case, for ex-
ample, in whitespaces where new users must avoid sending
if a TV station or wireless microphone is using the channel.
To know how often such preemption occurs, and thus how
often the agent experiences his penalty for being unable to
access the channel, the agent cares how often the allocated
channel is free (F) of exclusive agents. Given that no exclu-
sive agent is using the channel, an agent capable of sharing
(z; = 0) might also end up sharing the channel with other
agents. Thus, for example, an ISP also needs to know the ex-
pected share .S’ of the bandwidth he gets for his users given
that he is active and given that the channel is free.

We now formally define these two measures of channel
availability. The first is the probability that the channel is
free given an allocation A, i.e. the fraction of time no neigh-
bor in the conflict graph that requires exclusive access is try-
ing to use it. If NV, is the set of neighbors of 4 in G, we can
write this as

Pr(F|A) = 11

JEN; s.t. Ai:AJ‘/\:Ejzl

(1 —aj).

This computes the joint probability that no neighbor allo-
cated the same channel is active.

The second measure the agent cares about is, given that
the channel is free and the agent is itself active, the expected
fraction that is available to the agent to use. For an exclu-
sive use agent this measure is just 1 because it gets complete
access when the channel is free and it is active. But for non-
exclusive agents we need to consider that the agent may be
sharing with several neighbors. We first consider the effect
of a fixed number of active neighbors. For example, if there
are two other agents currently sharing a channel, we need
to know how much of the channel’s capacity each will get.



Agent ¢ will not receive more than a d; share: he doesn’t
have any more to send. We assume that agents use a Car-
rier Sense Multiple Access (CSMA) style MAC that shares
bandwidth as evenly as possible amongst the active (non ex-
clusive use) agents, subject to the constraint that no agent
J receives more than its demand d;. Formally, if N is the
set of ¢’s currently sending neighbors with whom he shares
a channel and Ny = {j € N | d; < f}, he receives a share
of the bandwidth equal to

share(N,i) = min (di, max
felo.1]

1- Z:J'GNf d;
[N — Ny|

The agent either gets his full demand or, failing that, his fair
share of the (which the max in the equation determines).
This calculation is an approximation because it abstracts away
the details of how the MAC actually manages contention.
We discuss this issue further in Section 4.6.

But more than this, we also need to worry about a distri-
bution on the number of neighbors that may be active in any
given epoch. The value share(N, 1) is for some fixed set N
of neighbors. Denote the total set of ¢’s neighbors assigned
to channel ¢ according to A by

v(A,i,c) ={j € N; | A; = c}.

Then the probability that a particular set N C v(A, i, ¢) for
¢ = A; (v for brevity) is active is

IT « ( 11 (1—@)).

JEN lev—N

active(N,v) =

From this, an agent’s expected share of the channel given
that the agent is itself active and that the channel is free
(where the expectation is computed over all possible acti-
vation patterns induced by allocation A), is then

0 if Pr;(F|A) =0
>_ncy active(N,v) - share(N, i) o.w.

where “o.w.” is “otherwise.” For an agent for which the
channel is never free (because a colocated exclusive user is
always active) then we just say this is O but it is seen to be
irrelevant in the final definition of expected value for an allo-
cation. For an exclusive use agent, this is simply 1 because
the agent prempts any sharing types when the channel is oth-
erwise free of interference from exclusive use types. For the
case of non-exclusive use agents, the expected share is com-
puted in expectation over all possible subsets of neighbors
that could be active. Note that this calculation is potentially
quite expensive as it requires summing over all possible sub-
sets of neighbors. We discuss this issue further in Section 4.5

We can now introduce the bid value that is implied by
our bidding language for wireless auctions with sharing. An

agent’s expected bid value for an allocation A is

b(A, i) 0if A; = L, otherwise
' B; Pr;(F|A)EA[S;|F] — pi(1 — Pr;(F|A)).

This combines his bid value for the amount of bandwidth
he is actually able to use with the penalty for those times he
is completely unable to access the channel.

Recall that B; is the expected value to an agent given
its own activation probability and when the channel is al-
ways free and a share d; available when it is active. The
first term is the expected value considering the probabil-
ity the channel is in fact free and the expected share. We
assume in constructing this expression a linear decrease in
value to a non-exclusive use agent for an expected fraction
below d; (since the expected share received by an agent is
Pri(F|A)EAlS|F].)

Similarly, recall that p; is the expected penalty to an agent
given its own probability of activation (how much it would
suffer on average over many epochs if the channel was al-
ways blocked when it was active.) Taken together, b(A, %)
represents the agent’s willingness to pay for an allocation
and the most an auctioneer could charge an agent. In prac-
tice, we charge less in order to achieve strategyproofness.

An agent also has a true per-epoch expected value V;, and
so the true expected value for an allocation is computed as,

(A1) 0if A; = L, otherwise
u(A,i) =
Vi Pri(F|A)EA[Si|F] — pi(1 — Pry(F|A)).

4.3 Allocation Algorithm

Even if no agents are permitted to share channels, finding
the optimal assignment of agents to channels is NP-Hard [20].
Therefore we adopt the same approach as previous strate-
gyproof algorithms and make allocations greedily. To do so,
our allocation algorithm assigns each agent ¢ to a bucket K;
based on his bid B;. There many ways this can be done as
long as it is monotone in the agents bid. For example, agent ¢
with a bid in the range [2¢, 2°+1) could be assigned to bucket
K; = {. In general, we assume that this is done according to
some function B(k) such that bin k contains all agents with
bids in the range [5(k), B(k + 1)).

The agents in each bucket are then assigned channels in
descending order of buckets, with the order of assignment
within a bucket determined randomly. Channels are assigned
greedily from among the channels currently available to agent
i. A c channel is available given allocation A if

e itisin C;;
e it is not assigned to any j such that (¢, j) € F and K; >
K; (aneighbor of ¢ from a higher bucket) such that

Z dy > 1; and

Lev(A,j,c)ufi,j}

e The combined demands of ¢ and his neighbors from higher



buckets assigned to c are less than 1:

jev(Aj,e)n{t | K,>K;}

We refer to this condition as the demand of ¢ being sat-
isfied. Similarly, the second condition ensures that the
demands of each neighbor from a higher bucket would
be satisfied.

The second condition helps ensure a monotone allocation
by preventing an agent from imposing any externality on an
agent from a higher bucket (so that the agent in the higher
bucket is unaffected by allocation decisions made in lower
buckets). The third condition is also important for a mono-
tone allocation to ensure that, in any higher bucket, 7 could
have his demand satisfied.

For each available channel ¢ and L, the algorithm calcu-
lates an estimate of the utility for each agent for the assign-
ment A that results from assigning ¢ to ¢, every currently
unassigned agent to L, and leaving the other agents assigned
as is as

(A, ) = BUK;) Pr(FIAEAIS; |F] - py(1 — Pr(F|A))

Note that the estimate differs from the agent’s actual bid by
assuming that each agent in a given bucket shares the same
value. Agent ¢ is assigned to the channel that maximizes the
sum of agent utilities (given the current assignment) while
not giving any agent a negative utility. In the event of a tie, he
is assigned to the lowest numbered among the tied channels,
with | being the lowest numbered channel.

After agents in a bucket are assigned channels, there is
an “ironing” step. First, the allocation procedure is re-run
for each agent to determine what would happen had he not
been in his current bucket (or above). These counterfactu-
als are used to determine if the agent might have been able
to be allocated a channel in a lower bucket. If so, as we
show later, this might cause a monotonicity violation where
an agent bids more but ends up less well off, so the provi-
sional allocation is “ironed” by changing the assignments of
the neighbors with whom he shared a channel to L.

This algorithm is specified in pseudocode as Algorithm 1.
In the specification, we use distinct names to be able to refer
to allocations created a long the way. The variable A(k;, 1, j)
denotes the state of the allocation in bucket k after consid-
ering the jth agent in the order given by the permutation 7.
Some of these allocations will be used for the conterfactual
questions asked by ironing, so ¢ is the agent currently being
omitted (¢ = 0 if there is no such agent).

THEOREM 2. Algorithm 1 is monotone. That is, for all
agents i, changing bids to B, > B; changes the alloca-
tion from Allocation to Allocation’ such that Pr;(F|A) >
Pr;(F|A) and E 4/[S;|F] > Ea[S;|F).

We defer the proof of Theorem 2 to the appendix.

Algorithm 1 Allocation Algorithm

7 < arandom permutation of 1...7n
M max; Ki
m < min; K;
Allocation; < 1Vi
A;(M+1,0,n) < LVi
// Do Provisional Allocation
for k = M tom by —1 do
A(k,0,0) « A(k+1,0,n)
for j = 1ton do
A(k,0,5) + A(k,0,5 — 1)
if K,,r(j) = k then
¢ + AssignChannel(A(k, 0, 5),7(5))
A,r(j)(k:,O,j) —cC
Allocationy ;) < ¢
end if
end for
end for
/I Counterfactuals to use for ironing
fori=1tondo
for j = 1ton do
A(Ki, ’L,]) — A(KZ,Z,j — 1)
ifKﬂ.(j) =K; A 7T(j) = i then
¢ + AssignChannel(A(K;,4,7),7(j))
Aﬂ(j)(Ki,i,j) —cC
end if
end for
end for
// Do ironing
fori=1tondo

m(j

Jree < Javail. c for 7(i) given A(K;, 7(i),n)

if Allocationy;y # L A free then
nbrs < v(Allocation, n(i), Allocation ;)
while dﬂ(l) + Zje,anS dj > 1do
j < last j € nbrs according to 7
Allocation; <+ L
nbrs < nbrs — {j}
end while
end if
end for
return Allocation
AssignChannel (A4, 7):
channels + {c available for i given A}
for all c € channels U {L} do
Ai —cC
value, = Z?Zl e(A,7)
if 3j s.t. e(4,j) < 0 then
value, = 0
end if
end for
return arg max.value,

(break ties in favor of _L, then lowest channel number)




4.4 Pricing Algorithm

Our pricing algorithm uses the insight from Theorem 1 to
set prices so that the monotonicity of Algorithm 1 (Theo-
rem 2) guarantees the auction is strategyproof. Note that the
algorithm bases these (up front) payments on the expected
value to the agent (based on the a;), so his actual value might
differ depending on the actual activation pattern of the other
agents. In our case, these prices have a particularly simple
form. Because of the way ironing works, there is exactly one
bucket in which an agent can receive an allocation in which
he shares a channel with other agents. In any lower bucket
he does not get allocated a channel; in any higher bucket
he is guaranteed by ironing to have his demand fully satis-
fied. Thus there are only three possible allocations and three
possible prices. Algorithm 2 shows how this bucket can be
determined and what price should be charged in each case.

Algorithm 2 Pricing Algorithm
M <+ max; K;
m < min; K;
fori=1tondo
if Allocation; = L then

P,=0

else
run Algorithm 1 without agent ¢ to get A’(k, 0, n)Vk
k=M

while K > m — 1 Adc e C;
s.t. v(A'(k,0,n),i,c) = 0 do
k=k-1
end while
/I k is now the unique bucket in which ¢ might share
run Algorithm 1 with ¢ in bucket k£ to get
Allocation’.
f + Pr;(F|Allocation’)
S < EAllocation’ [Sz|F]
if K; > k then
Py < Blk+1) = (8(k +1) — B(k)) f
else
P, « B(k)fs — pi(l— f)
end if
end if
end for
return P

Recall that we assume that parameters such as an agents
activation probability and demand are known to the auction-
eer. Thus, when we say that the algorithm is strategyproof,
we mean that agents have no incentive to lie about their bids.
Since everything depends on this one value, our auction is an
example of a single-dimensional auction (with externalities).

THEOREM 3. The auction that allocates channels using
Algorithm I and charges payments according to Algorithm 2
is strategyproof.

Theorem 3 essentially follows from Theorem 1. However,

the theorem would have to be slightly adapted because in our
model agents’ utilities depend on their penalty p; in a way
that is not linear in their valuation. Rather than proving a
variant of Theorem 1, we simply use its approach to prove
strategyproofness directly as the proof gives insight into how
prices work in our case. We defer the proof to the appendix.

4.5 Running time of saTya

Recall that n is the number of agents and x is the num-
ber of channels. As we show, the running time of SATYA
is determined largely by the implementation of the Assign-
Channel procedure. Unfortunately, calculating it for agent ¢
requires time exponential in the number of neighbors with
which ¢ shares each channel considered. If sharing is limited
to d neighbors in practice, this approach requires only time
O(xn2%). If d is small due to the nature of the conflict graph
or an imposed constraint on the amount of sharing permitted,
this approach is efficient enough. In our experiments we did
not need to impose such a limitation.

THEOREM 4. SATYA’s running time is determined by the
time needed for O(n?) calls to AssignChannel.

PROOF. SATYA needs to calculate A(k, 0, n) for each non-
empty bucket k and A(K;,%,n) for each agent i. There are
at most n non-empty buckets and n agents for a total of 2n
allocations to be computed. Each allocation requires assign-
ing a channel to each agent at most once, so there are O(n?)
calls to AssignChannel. Ironing takes time O(xn) per agent
for a total of O(xn?), so the running time of the allocation
is dominated by the calls to AssignChannel (which needs at
least time x to consider each channel).

The pricing algorithm runs for each agent and runs the al-
location algorithm twice: once to determine in which bucket
the agent might share and once to determine what his share
would be in that bucket. Thus SATYA requires 2n + 1 allo-
cations for a total of O(n?) calls to AssignChannel. []

4.6 Extensions

SATYA can be extended in a number of ways. In this sec-
tion we discuss extensions to auctioning multiple channels,
using other models for demand satisfaction, and the ability
to customize aspects of the algorithm.

VERITAS [35] suggests a number of ways to extend chan-
nel auction algorithms to multiple channels. In particular,
agents can either require a specific number of channels or be
willing to accept a smaller number than they request. Agents
may also wish to insist that their channel allocation be con-
tiguous. SATYA can be extended to allow all of these. Due
to space considerations we omit the details of the algorith-
mic changes required, but simulations of this extension are
presented in Section 5.4.

As mentioned in Section 4.2, we use a simple model to
calculate what happens when agents share a channel. Our
simple model can be replaced my a more sophisticated model
from prior work that has explored the capacity of CSMA



Agent Type Act. Prob. Bid Penalty | Demand
Exclusive-Continuous 1 [0, 1000] 10000 1
Exclusive-Periodic [0.05, 0.15] | [0, 1000] 5000 1

Sharing-High 1 [0, 1000] 10000 [0.3,1]

Sharing-Low [0, 1] [0, 1000] 5000 [0.3,1]

Table 1: Mix of agents used in the evaluation

based wireless networks (e.g., [27, 37, 38, 28])as long as,
in expectation, having more neighbors decreases an agent’s
share of the channel. This model can also be extended in
other interesting ways. For example, we could add for each
agent ¢ a parameter ¢; such that if he receives less than an
¢; fraction of the channel it is useless. This simply requires
defining his share to be 0 if it would be less than ¢;.

Finally, SATYA has a number of parameters that can be
altered in various ways. On obvious choice is the function S
used to assign agents to buckets. Any function that is mono-
tone in an agent’s bid can be used. This includes functions
that take into account other facts about the agent, for exam-
ple his type or the number of neighbors he has in the conflict
graph. Another choice is the permutation 7. Rather than
choosing it randomly, any method that does not depend on
agent bids can be used. Some natural possibilities include
ordering agents by their degree in the conflict graph (so that
agents who interfere less are allocated first), ordering by a
combination of activation probability and demand (so that
agents who use less spectrum are allocated first) or consid-
ering exclusive agents last since they impose much larger
externalties on those with whom they share.

S. EVALUATION

In this section we compare the performance of SATYA
to VERITAS. Since VERITAS does not permit sharing, we
modified it slightly and implemented VERITAS-S, a variant
of the algorithm that permits sharing as long as there are no
externalities imposed. In VERITAS-S, an agent is assigned
a channel only as long as it does not reduce the value of the
agent or any of the neighboring nodes (in the conflict graph).
We also implemented GREEDY, a version of SATYA with-
out bucketing and ironing that provides higher overall ef-
ficiency. GREEDY is neither strategyproof nor monotone.
Since it is not strategyproof, agents bids need not match their
true values. However, to set as high a bar as possible, we as-
sume they do so Since it gets to act on the same information
but has fewer constraints than SATYA, GREEDY serves as
an upper bound for our experiments.

Parameters: As shown in Table 1, all our experiments use
four classes of agents bidding for spectrum. Each class rep-
resents different applications. For example, a TV station
serving a local community is an agent who wants exclusive
access for a long period of time. A wireless microphone is
an example of an agent who wants exclusive access but for
short periods of time. A low-cost rural ISP is an example of
a Sharing-High agent who expects to actively use the spec-
trum but can potentially tolerate sharing, and a regular home

user is an example of a Sharing-Low class agent whose spec-
trum access pattern varies. Note, each class of agents may
have different transmit powers and coverage areas than the
others. Since our goal is to evaluate the efficacy of SATYA
in exploiting opportunities for sharing, we assign 5% of the
total agents as exclusive-continuous, 15% exclusive-shared,
30% Sharing-High, and the remaining 50% Sharing-Low.
Methodology: Each auction algorithm takes as input a con-
flict graph for the agents. To generate this conflict graph
in a realistic manner, we implement and use the popular
Longley-Rice [2] propagation model in conjunction with high
resolution terrain information from NASA [1]. This sophis-
ticated model estimates signal propagation between any two
points on the earth’s surface factoring in terrain information,
curvature of the earth, and climactic conditions. We use this
model to predict the signal attenuation between agents, and
consequently the conflcit graph between the bidding agents.

We use the FCC’s publicly available CDBS [11] database
to model the transmit power, location, and coverage area of
Exclusive-Continuous users. Note, this information as well
as the signal propagation predictions are sensitive to geo-
graphic areas. We model the presence of all other types of
agents using population density information.

Agents are scattered across a 25 mile x 25 mile urban area
in a random fashion by factoring in population density infor-
mation. Since each class of agent has a different coverage
area, depending on the type of agent, we determine a pair
of conflicting nodes if the propagation model predicts sig-
nal reception higher than a specified threshold. We repeat
each run of the experiment 10 times and present averaged
numbers across runs. Unless otherwise specified, the num-
ber of channels is 5 and, except for Section 5.4, each agent
only desires a single channel. In tuning SATYA, we experi-
mented with a variety of methods for determining to which
bucket to assign an agent. We do not present these results
for space reasons, but based on them use buckets of size 500
(B(k) = 500k).

In our experiments, we us the following metrics to evalu-
ate SATYA, VERITAS, VERITAS-S, and GREEDY.

o Winning Agents: The total number of agents that are al-
located at least one channel by the auction algorithm.

e Social Welfare: The sum of the valuations for the alloca-
tioion by winning agents (includes externalities).

e Satisfaction: The sum of the fraction of his demand each
agent had satisfied.

o Spectrum Utilization: The sum of satisfiaction weighted
by activation probability and demand. channel each win-
ning agent receives by the auction algorithm.

o Revenue: The sum of agents’ payments.

Social welfare is a generally accepted measure in eco-
nomics of the total happiness of agents. From a networking
perspective, spectrum utilization is a measure of how much
the spectrum is being used (similar to the total network ca-
pacity). Agents allocated and satisfaction are measures of
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how many and to what extent the algorithm is able to sat-
isfy agent demands. Revenue is how much spectrum owners
benefit, and thus their incentive to participate.

5.1 Varying the Number of Agents

Figure 2 shows the performance of various algorithms as a
function of the number of agents participating in the auction.
As we vary the number of agents, we keep the mix of bidders
to be the same as Table 1.

As seen in Figure 2(a), as the number of agents increases,
SATYA produces up to 72% more winning agents when com-
pared to VERITAS and VERITAS-S. This gain comes from
being permitted to allocate agents despite externalities. With
fewer agents, all three algorithms demonstrate similar per-
formance because almost all agents can either be allocated a
channel of their own or are impossible to satisfy.

Overall, VERITAS-S and VERITAS do not make the best
use of possible bidders who can share. This is demonstrated
in Figure 2(b), which is the distribution of different classes
of bidders assigned channels by each algorithm. As the num-
ber of agents increases, VERITAS-S and VERITAS signifi-
cantly reduce the fraction of agents capable of sharing who
are assigned channels (relative to SATYA). However, all al-
gorithms demonstrate a similar performance in the fraction

of exclusive bidders who are assigned channels. Hence, SATYA

is capable of taking advantage of sharing by allocating chan-
nels to more of such users. As expected GREEDY, which

makes no effort to avoid externalities that would violate mono-

tonicity, outperforms all strategyproof auctions and is able to
assign more sharing agents. Although we omit the data for
space, the difference in performance between SATYA and
GREEDY is primarily due to bucketing. Ironing does occur
but has only a minor effect.
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In addition to the number of agents allocated spectrum,
the results for other metrics are shown in Figure 3. As seen
in Figure 3(a), the total social welfare attained by SATYA
increases with an increase in the number of agents. This
is a direct consequence of assigning channels to more agents
capable of sharing the spectrum. This shows that, despite ex-
ternalities from sharing, the additional agents allocated con-
sider it valuable. At 600 bidders, SATYA realizes a gain of
25% over VERITAS-S and 40% over VERITAS in the to-
tal social welfare of the network. Similarly, as seen in Fig-
ure 3(b), we find a 50-80% increase in the spectrum utiliza-
tion of the network using SATYA. As social welfare, spec-
trum utilization and satisfaction all take into account exter-
nalities, Figures 3(a), 3(c), and 3(b) show significant corre-
lation. As with the agents allocated metric, at fewer nodes
the algorithsms are essentially indistinguishable as there are
few opportunities to share.

Hence, the main takeaway is that, by using the bucketing
mechanism, SATYA increases the number of winning agents
as well as the total utility and use of the assigned spectrum.

5.2 Varying the Number of Channels

We also measured the effect of varying the number of
channels auctioned on the overall outcome of the auction.
The results shown in Figure 4 demonstrate the following
trend: as the number of auctioned channels increases the gap
in performance among the algorithms reduces. This is sim-
ilar to having fewer bidders participate in the auction; with
more channels, there is a reduced need for sharing and all al-
gorithms perform similarly. As Figure 4(a) shows, SATYA is
still able to assign more bidders than other algorithms until
about 25 auctioned channels. Similarly, in Figure 4(b), we
see that SATYA outperforms the other algorithms by 20-60%
in social welfare up until about 10 channels.

We also varied the number of agents and the number of
channels simultaneously and the results for SATYA are shown
in Figure 4(c). We see that as the number of agents in-
creases, SATYA takes advantage of the increased opportu-
nity for sharing and allocate more agents.

Hence, the main takeaway is SATYA provides substantial
benefits for those scenarios where the number of channels
makes spectrum scarce.

5.3 Measuring Revenue

We consider social welfare the most important measure of
performance: a market that finds success in the long run will
allocate resources to those that find the most value. How-
ever, in our setting revenue may also be important to pro-
vide an incentive for current spectrum owners to participate
in the secondary market. The pricing algorithm presented
in Section 4.4 determines the total revenue obtained by the
auctioneer. First, we measure the total revenue obtained as a

"We elide graphs for spectrum utilization and satisfaction for this
and remaining experiments due to a lack of space; they demonstrate
a similar trend.
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of channels available. To make best use of a reserve price,
the auctioneer needs a good way to determine what this min-
imum bid should be. In simple situations, the optimum value
can be determined theoretically [29]. However, our model is
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function of the number of agents bidding for spectrum with-
out reserve prices. We do not include GREEDY in this anal-
ysis because it is not strategyproof and it is not clear what
agents will bid and thus what the actual revenue would be.
As seen in Figure 5(a), the revenue obtained by SATYA and
VERITAS-S is much lower than VERITAS for smaller num-
bers of agents. As explained in Section 3, this is a direct con-
sequence of sharing making it easier to accomodate agents:
if they will be allocated with a bid of zero they do not have
to pay anything in a strategyproof auction.

To improve revenue in such situations, we use a reserve
price, a technique applicable to many auction designs. The
basic idea is that there is a minimum bid an agent must
make to participate in the auction. This does not affect strat-
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ure 6(a), with a reserve price of 0 (i.e. no reserve price),
VERITAS performs better than SATYA and VERITAS-S.
However, as the reserve price begins to increase, the revenue
derived from all three auctions increases. This is because
we are able to allocate nodes while charging them a reserve
price if they fall into the lowest bucket. However, at around
a price around 700 (depending on the algorithm), there is an
inflection point in the revenue. As seen in Figure 6(b), this is
because significantly fewer agents are allocated by the auc-
tion and social welfare decreases (Figure 6(c)). Hence, re-
serve prices must balance the revenue increase against the
loss of social welfare.

Based on these results, we use a reserve price of 400 and
repeat the experiment to measure revenue by varying the
number of bidders. We used a fixed reserve price for consis-
tency; in practice it could depend on the number of agents.
As Figure 5(b) shows, the revenues for the auctioneer in-
crease significantly for all algorithms relative to Figure 5(a).
This is most pronounced with 50 agents where revenue goes
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from essentially zero to approximately ten thousand. SATYA,
which without a reserve price lost revenue by being too ef-
ficient in allocating agents, benefits slightly more than the
other two algorithms. With a large number of agents, the re-
serve price is essentially irrelevant because of the amount of
competition; with 550 agents the gain is below XX %.

5.4 Multiple Channels

SATYA is also capable of allocating multiple channels
when agents bid for multiple channels in an auction. To
illustrate this, we ran an experiment where we varied the
number of channels that each agent bids for as well as the
number of agents in the auction. Not all agents bid for the
same number of channels. The number of bid for is what an

SATYA to share channels results in superior allocations by
a variety of metrics. We also showed that revenue can be in-
creased using reserve prices, which provides spectrum own-
ers with a stronger incentive to participate.
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Appendix
Proof of Theorem 2

First, we observe that an agent’s bid is only used to de-
termine his bucket and is afterward ignored by the algo-
rithm (estimates of utility use the agent’s bucket rather than
his bid). Thus is it sufficient to consider deviations that
cause i to change buckets. If A; = L, then Pr;(F|A) =
EA[S;|F] = 0, so the claim is trivially true. Otherwise, @
moves up to some bucket ky > k. Recall that v(A, i, ¢) =
{7 € Ni | A; = ¢} denotes the set of i’s neighbors assigned
to channel c according to A. An important observation about
the algorithm is that once it makes an assignment that some
A;(k,0,7) = ¢, it never changes this for any later k and j.
This is the reason the ironing step only changes Allocation
and not A. Thus, the set v(A(k, 0, j), i, ¢) grows monotoni-
cally as the algorithms iterates over k and j.

Since ¢ was assigned to ¢ in the assignment A, ¢ must
have been available to him when he was assigned. By the
third part of the definition of availability and the monotonic
growth of v, ¢ would have his demand satisfied with neigh-
bors v(A(k,0,7),i,c) forall k > k1 + 1 and all j. In par-
ticular, this means his demand is satisfied with neighbors
v(A(ka, 0,771 (i) — 1),14,¢).

When computing Allocation’ with the new bids B’, the
algorithm computes a new set of incremental allocations A’.
Since the algorithm does not look ahead, A’ (kg, 0, 7 *(4) —
1) = A(kg,0,71(i) — 1). This means that, in
AssignChannel(A’ (k2, 0,7 1(4)),)), i could be assigned to
c and have his demand satisfied. Therefore he will be as-
signed to some such channel ¢’ (not necessarily ¢ as there
might be a lower numbered channel available). Furthermore,
on c he does not impose any externality on his neighbors (all
their demands are satisfied by the second part of the defini-
tion of availability). Therefore, since the algorithm greedily
maximizes the total value, this true on ¢’ as well.

Again since the algorithm does not look ahead, ¢ increas-
ing his bid does not change anything before bucket ko, so
A'(ke +1,0,n) = A(ks + 1,0,n). Since the algorithm
does not consider allocating ¢ a channel in bucket k2 when
computing A (because he is in the lower bucket k1) or when
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asking the counterfactual about what would have happened
had ¢ not been in bucket ko in A’, A’ (ka,i,n) = A(ks,0,n).
Thus v(A'(k2,4,n),i,¢) = v(A(ks,0,n),i,c) and in the
ironing step running on B,all of i’s neighbors with which
it might have shared a channel with be reassigned to L un-
til its demand is satisfied. Since i’s neighbors were satisfied
when 4 was assigned to ¢’ and neighbors are ironed in the
opposite order from that in which they were added, ¢ will
not be ironed by any of its neighbors. Thus Pr;(F|A) =
E 4/[Si|F] = 1 and the allocation is monotone.

Proof of Theorem 3

As observed there are only 3 possible allocations and sets of
prices. An agent either gets nothing and pays nothing for a
utility of 0, ends up in bucket & in which he might share and
gets V; fs—p;(1— f) and pays (k) fs—p;(1— f) for a utility
of (V; — B(k))fs, or ends up in a higher bucket and gets V;
(he has a channel to himself) and pays 8(k+1)—(8(k+1)—
B(k))fsforautility of V; — B(k+1)+ (8(k+1)—B(k)) fs.
First suppose that V; < S(k). If he ends up sharing his
utility is (V; — 8(k)) fs < 0. If he ends up with a channel to
himself his utility is
Vi—B(k+1)+ (B(k+1) - B(k))fs <
(BUk+1) — B (S5 — 1) < 0.
Thus his optimal strategy is to bid his true value and get L.
Now suppose that (k) < V; < B(k + 1). If he bids
truthfully, his utility is (V; — 8(k)) fs > 0, so he cannot gain

by lowering his bid. If he raises his bid above S(k + 1) he
will end up with a utility of

Vi=B(k+1)+ (B(k+1) — B(k))fs =
(Vi =Bk + 1)) = fs) + (Vi = B(k)) fs <
(Vi = B(k))fs.
Thus his optimal strategy is to bid his true value and share.
Finally, suppose that V; > S(k + 1). If he bids truthfully,
his utility is V; — B(k + 1) + (B(k + 1) — B(k))fs > 0, so
he does better than if he is not allocated. If he lowers his bid
to be in bucket k, his utility is

(Vi = B(k))fs <Vi= Bk +1) + (B(k+1) = B(k))[s.

Thus his optimal strategy is to bid his true value.



